Numpy
Numpy is python’s linear algebra library.
To install it use the following command in command prompt:
pip install numpy
In anaconda distribution:
conda install numpy
Creating numpy arrays
import numpy as np
lst = [1,2,3]
np.array(lst)
array([1, 2, 3])
lst = [[1,2,3],[4,5,6]]
np.array(lst)
array([[1, 2, 3],
[4, 5, 6]])
Built in methods
#arange(start,stop,step)
np.arange(0,10,2)
array([0, 2, 4, 6, 8])
np.arange(0,10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#ones(shape tuple)
np.ones((3,3))
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
#linspace(start,stop,number of evenly spaced numbers)
np.linspace(0,10,3)
array([ 0., 5., 10.])
np.linspace(0,10,10)
array([ 0. , 1.11111111, 2.22222222, 3.33333333, 4.44444444,
5.55555556, 6.66666667, 7.77777778, 8.88888889, 10. ])
#4x4 Identity matrix
np.eye(4,4)
array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
arr = np.arange(0,25)
#Get the shape of array
arr.shape
(25,)
#reshaping an array
arr.reshape(5,5)
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
arr
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24])
arr.max()
24
arr.min()
0
arr.mean()
12.0
arr.std()
7.211102550927978
arr.var()
52.0
#returns the index of maximum value
arr.argmax()
24
#returns the index of minimum value
arr.argmin()
0
Generating random arrays
#Generating random numbers from uniform distribution
np.random.rand(2,2)
array([[0.48353285, 0.57472306],
[0.24742253, 0.40119928]])
np.random.rand(5,5)
array([[0.71716514, 0.89992773, 0.49219231, 0.03280521, 0.25671464],
[0.74452436, 0.34535279, 0.34108729, 0.69509882, 0.38784086],
[0.17217316, 0.97134788, 0.90350981, 0.57780894, 0.50682227],
[0.27788103, 0.22697458, 0.34995732, 0.42797256, 0.95632152],
[0.68261078, 0.3899289 , 0.06753088, 0.74181803, 0.95712323]])
#Generating random numbers from standard normal distribution
np.random.randn(2,2)
array([[0.71758331, 1.28048375],
[1.5364017 , 0.77660221]])
#randint(low,high,size tuple)
np.random.randint(0,100,(2,2))
array([[20, 18],
[73, 48]])
Numpy indexing and selection
arr = np.random.randint(0,100,(5,5))
arr
array([[28, 73, 47, 91, 95],
[15, 82, 81, 1, 81],
[ 7, 5, 67, 57, 1],
[60, 49, 1, 41, 53],
[60, 19, 74, 37, 0]])
#Getting first number
arr[0,0]
28
#Getting first two rows
arr[0:2,0:]
array([[28, 73, 47, 91, 95],
[15, 82, 81, 1, 81]])
#Getting last two columns from last two rows
arr[3:,3:]
array([[41, 53],
[37, 0]])
#Getting the 2nd row and the last row
arr[[1,-1]]
array([[15, 82, 81, 1, 81],
[60, 19, 74, 37, 0]])
#Getting numbers greater than 50 from our array
arr[arr>50]
array([73, 91, 95, 82, 81, 81, 67, 57, 60, 53, 60, 74])
Broadcasting
arr = np.arange(0,10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[0:5] = 100
arr
array([100, 100, 100, 100, 100, 5, 6, 7, 8, 9])
Copy of array
arr = np.arange(0,10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr_copy = arr.copy()
arr_copy
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Airthmetic operations
arr = np.arange(0,10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr + arr
array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
arr - arr
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
arr * arr
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
arr / arr
array([nan, 1., 1., 1., 1., 1., 1., 1., 1., 1.])
arr/3
array([0. , 0.33333333, 0.66666667, 1. , 1.33333333,
1.66666667, 2. , 2.33333333, 2.66666667, 3. ])
3/arr
array([ inf, 3. , 1.5 , 1. , 0.75 ,
0.6 , 0.5 , 0.42857143, 0.375 , 0.33333333])
arr ** 2
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81], dtype=int32)
#Taking square root
np.sqrt(arr)
array([0. , 1. , 1.41421356, 1.73205081, 2. ,
2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ])
np.log()
array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
2.98095799e+03, 8.10308393e+03])
Leave a comment